Accounting for the uncertainty of speech estimates in the complex domain for minimum mean square error speech enhancement

نویسندگان

  • Ramón Fernández Astudillo
  • Dorothea Kolossa
  • Reinhold Orglmeister
چکیده

Uncertainty decoding and uncertainty propagation, or error propagation, techniques have emerged as a powerful tool to increase the accuracy of automatic speech recognition systems by employing an uncertain, or probabilistic, description of the speech features rather than the usual point estimate. In this paper we analyze the uncertainty generated in the complex Fourier domain when performing speech enhancement with the Wiener or Ephraim-Malah filters. We derive closed form solutions for the computation of the error of estimation and show that it provides a better insight into the origin of estimation uncertainty. We also show how the combination of such an error estimate with uncertainty propagation and uncertainty decoding or modified imputation yields superior recognition robustness when compared to conventional MMSE estimators with little increase in the computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty

In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE  estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of  noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...

متن کامل

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition using uncertainty propagation

Uncertainty propagation techniques achieve a more robust automatic speech recognition by modeling the information missing after speech enhancement in the short-time Fourier transform (STFT) domain in probabilistic form. This information is then propagated into the feature domain where recognition takes place and combined with observation uncertainty techniques like uncertainty decoding. In this...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Integration of DNN based speech enhancement and ASR

Speech enhancement employing Deep Neural Networks (DNNs) is gaining strength as a data-driven alternative to classical Minimum Mean Square Error (MMSE) enhancement approaches. In the past, Observation Uncertainty approaches to integrate MMSE speech enhancement with Automatic Speech Recognition (ASR) have yielded good results as a lightweight alternative for robust ASR. In this paper we thus exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009